
Real World AI

“Generate a funny image where a robot is hard at work at a computer terminal while an IT
professional is relaxing in a chair”

Leveraging emerging AI technology for operational
efficiency and accuracy.

• Exploring the immediate potential of AI.

• Exploring the limitations of AI.

• Identifying when we are interloping?

• Walk-thru an example.

Who am I?

Who am I not?

ß This Guy.
(image was generated from pictures of me)

Matthew Scott Mackenzie

• Worked in Information Technology.
• Very interested in Software development.
• Unix/Linux Administration and DevOps was

more interested in me.
• Major bias

• If I am not adding value, I shouldn’t be involved.

• If a process requires perfection of an individual
performance, it is not a process.

• Repeatability is a foundational performance metric

Ethical and Societal Concerns

I am specifically avoiding a deep dive into safety and ethics.

• Most impactful technology of the future.
• Danger and Power seem to be related.

• Left out because:
• Too big to tackle.

• Too scary to tackle.
• For people trained to think about such issues.

Exploring the limitations of AI.

“generate an image of a satellite suspended by balloons”

Data Dependency

• A factor that limits what AI can do is data. AI can train
on data and make decisions based on patterns and
algorithms.

• This may yield something that looks like a creative
result.

• AI itself has limited creativity and AI models are typically
trained for a subset of knowledge / problems.

These limitations are likely transient in the development
and use of AI.

“Generate image spelling Data using images of 0s and 1s”

“Look at your image. Did you get it correct?”

I can't visually inspect images directly or interpret visual content in the way a human can. However,
based on the detailed description provided for the image creation, the result should closely align
with the request of spelling out the word 'Data' using a mosaic of 0s and 1s. If you have any specific
adjustments or a different vision in mind, feel free to let me know, and I can assist further!

Exploring the limitations of AI.

This page intentionally left blank.

Do as little as possible AI Tools

Examples of high quality, good general knowledge AI
Models. They have a good balance of understanding
and knowledge.

When we talk about AI, we as lifelong tech geeks immediately
want to apply what we know.

• Host our own models.
• Buy a bigger computer.
• Justify those GPUs.

AI use still needs to be cost effective.

• Hugging face has 579,604 (and growing models)
• Start with a likely good fit and improve by training if needed
• Use a cloud computing platform

• APIs

Do as little as possible

Prompt engineering is both an art and a science, requiring a
blend of linguistic skills, technical understanding of AI
models, and creativity. As AI technologies evolve, the
strategies and techniques of prompt engineering also
continue to develop, making it a dynamic and critical field
for anyone working with generative AI models.

• Prompt templates

• Precision and Clarity
• Contextualization
• Experimentation
• Read the examples and documentation

Prompt Engineering - designing and refining the text
prompts that are used to guide artificial intelligence (AI)
models

Our Opportunity:
• Database vendor change for large EMR application.
• Thousands of reports written using PL/SQL need to be converted to TSQL.
• Fifty reports used for testing

AI in the wild

High level overview

AI in the wild

Human: Convert the provided PL/SQL query/code to TSQL for microsoft sql server.

You are generating code.
ALWAYS Keep comments minimal.
ALWAYS make comments escaped for SQL i.e. "--"
ALWAYS encapsulate the generated TSQL code in "-- claudeTSQL --" tags.
NEVER use the tag "-- claudeTSQL --" in any other place.

Check your work carefully to make sure there are no mistakes, errors, or inconsistencies. If there are
errors, generate a new version with those errors fixed.
Here is the PL/SQL query/code to convert :

AI in the wild

Why AWS Bedrock?
• Choice of foundation models
• Security and compliance
• Customization
• Serverless
• Ease of use

AI in the wild

import sys

import boto3

import json

import asyncio

import logging

from botocore.config import Config

from botocore.exceptions import ClientError

class ModelInvoker:

 def __init__(self):

 self.config = Config(

 region_name='us-west-2',

 read_timeout=1200,

 connect_timeout=1200,

 tcp_keepalive=True,

 retries={"max_attempts": 10}

)

 self.bedrock_runtime_client = boto3.client('bedrock-
runtime', config=self.config)

 async def generate_message(self, model_id,
system_prompt, messages):

 """

 Generates a message using the Anthropic Claude model
with the given parameters.

< <<<
This code was generated by AI. Sadly, as I didn’t know I would
be using it in a presentation, the prompt file to generate it has
been lost. I did ask ChatGPT to generate a prompt from the
code, but the results reminded me of the limitations.

AI in the wild

#!/bin/bash

Directory where the .sql files are located

sqlDirectory="PLSQL"

Local file to concatenate with .sql files

qPromptFile="qPrompt"

Process each .sql file found in the directory

find "$sqlDirectory" -type f -iname "*.sql" | while IFS= read -r sqlFile; do

 # Replace 'PLSQL' with 'TSQL' in the directory path

 newDirPath="${sqlFile/PLSQL/TSQL}"

 newDirPath=$(dirname "$newDirPath")

 # Make sure the directory exists

 mkdir -p "$newDirPath"

 # Get the base name of the file

 newFileName=$(basename "$sqlFile")

 # Set the new file path

 newFilePath="$newDirPath/$newFileName"

 # Check if the output file already exists, skip if it does

 if [-f "$newFilePath"]; then

 echo "Skipping existing file: $newFilePath"

 continue

 fi

 # Concatenate qPrompt with the SQL file and write to argFile

 cat "$qPromptFile" "$sqlFile" > argFile

 # Ensure argFile is in UTF-8 (and remove silly ^M)

 iconv -t UTF-8 argFile -o argFile.utf8

 sed -e "s/^M//" argFile.utf8 > argFile.utf8.noM

 mv argFile.utf8.noM argFile

 rm argFile.utf8

 # Run python3 on argFile and redirect output

 echo "Converting $sqlFile"

 python3 qClaudeRS.py argFile > "$newFilePath"

 echo >> "$newFilePath"

 # Count the occurrences of '-- claudeTSQL --'

 count=$(grep -c -- '-- claudeTSQL --' "$newFilePath")

Quick and dirty shell to prototype

Directory where the .sql files are located

Local file to concatenate with .sql files

Process each .sql file found in the directory

 # Replace 'PLSQL' with 'TSQL' in the directory path

 # Make sure the directory exists

 # Get the base name of the file

 # Set the new file path

 # Check if the output file already exists, skip if it does

 # Concatenate qPrompt with the SQL file and write to argFile

 # Ensure argFile is in UTF-8 (and remove silly ^M)

 # Run python3 on argFile and redirect output

 # Count the occurrences of '-- claudeTSQL --'

 # Check if there are at least 2 occurrences

 # If there are at least two instances, apply awk

 # Find the line numbers for the first and second occurrences

 # Edit the file in place

 # Comment out all lines before the first instance and after the second instance

 # If there are not at least two instances, treat as an error

 # Take a little break to help avoid throttlingException

AI in the wild

Check if there are at least 2 occurrences

 if ["$count" -ge 2]; then

 # If there are at least two instances, apply awk

 # Find the line numbers for the first and second occurrences

 first_line=$(grep -n -- '-- claudeTSQL --' "$newFilePath" | head -1 | cut -d: -f1)

 second_line=$(grep -n -- '-- claudeTSQL --' "$newFilePath" | head -2 | tail -1 | cut -d: -f1)

 # Edit the file in place

 # Comment out all lines before the first instance and after the second instance

 awk -v first="$first_line" -v second="$second_line" 'NR < first || NR >

 second {print "--" $0; next} {print $0}' "$newFilePath" > tmpfile && mv tmpfile "$newFilePath"

 else

 # If there are not at least two instances, treat as an error

 echo "Error: The file does not contain at least two instances of '-- claudeTSQL --'"

 mv "$newFilePath" "${newFilePath}.err"

 fi

 # Take a little break to help avoid throttlingException

 sleep 45

done

Time and Money
• I took longer crafting this presentation than I did prototyping
the use of Claude for translating SQL.
• max_tokens_to_sample
• The costs to run Claude and translate the 50 files (a few times)
was ~18$ (~8k for all ~3k files)

“generate an image of an AI robot lighting a cigar with burning money”

AI in the wild

PL/SQL

TSQL

AI in the wild

Results?

• The reports team does not
have an environment to test
the output yet.

• Visual inspection did not
reveal any deficiencies.

AI in the wild

“generate an image showing the word result with a question mark”

• Focus on Collaboration: Look for opportunities to
collaborate with other teams. This way, you can share
your expertise while respecting ownership and
established processes.
• Offer Support: Instead of taking over, can you offer
support or resources to the team already working on
the issue? This can demonstrate your willingness to
help without interloping.
• Focus on Your Knowledge: Are there areas that
could benefit from sharpening your skills? We are
becoming generalist.

“Nostalgia ain't
what it used to
be.”

― Peter De Vries

